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Abstract. We study the problem of colouring the vertices of a polygon,
such that every viewer can see a unique colour. The goal is to minimize
the number of colours used. This is also known as the conflict-free chro-
matic guarding problem with vertex guards, and is motivated, e.g., by
the problem of radio frequency assignment to sensors placed at the poly-
gon vertices. We study the scenario in which viewers can be all points
of the polygon (such as a mobile robot which moves in the interior of
the polygon). We efficiently solve the related problem of minimizing the
number of guards and approximate (up to only an additive error) the
number of colours required in the special case of polygons called funnels.
As a corollary we sketch an upper bound of O(log2 n) colours on n-vertex
weak visibility polygons which generalizes to all simple polygons.

Keywords: Computational geometry · Polygon guarding · Visibility
graph · Art gallery problem · Conflict-free coloring

1 Introduction

The guarding of a polygon is placing “guards” into the polygon, in a way that
the guards collectively can see the whole polygon. It is usually assumed that a
guard can see any point unless there is an obstacle or a wall between the guard
and that point. One of the best known problems in computational geometry,
the art gallery problem is essentially a guarding problem [7,28]. The problem
is to find the minimum number of guards to guard an art gallery, which is
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modeled by an n-vertex polygon. This problem was shown to be NP-hard by
Lee and Lin [27] and more recently ∃R-complete by Abrahamsen et al. [2]. The
Art Gallery Theorem, proved by Chvátal, shows that �n/3� guards are sufficient
and sometimes necessary to guard a simple polygon [15].

The guard minimization problem has been studied under many constraints;
such as the placement of guards being restricted to the polygonal perimeter or
vertices [25], the viewers being restricted to vertices, the polygon being terrains
[3,6,16], weakly visible from an edge [8], with holes or orthogonal [10,17,24],
with respect to parameterization [11], approximability [23].

For most of these cases the problem remains hard, but interesting approxi-
mation algorithms have also been provided [12,19].

In addition to above mentioned versions of art gallery problem (or rather
polygon guarding problem), some problems consider not the number of the
guards, but the number of colours that are assigned to the guards. The colours,
depending on the scope, determine the types of the guards. If any observer in the
polygon sees at least one guard with a different type, then that polygon has a
conflict-free chromatic guarding [4,5,22]. If every guard that any given observer
sees is of different type, then that polygon has a strong chromatic guarding [18].

Motivation. In general, conflict-free colouring of a graph is assigning colours to
vertices of that graph such that the neighborhood of each vertex contains at
least one unique colour. This problem was first studied by Biggs with the name
perfect code, which is essentially conflict-free colouring of a graph using only one
colour [9,26]. Later on, this topic aroused interest on polygon visibility graphs
when the field of robotics became widespread [14,20].

Consider a scenario where a mobile robot traverses a room from one point
to another, communicating with the wireless sensors placed on the corners of
the room. Even if the robot has full access to the map of the room, it cannot
determine its location precisely because of accumulating rounding errors. And
thus it needs clear markings in the room to guide itself to the end point in an
energy efficient way. To guide a mobile robot with wireless sensors, two properties
must be satisfied. First one is, no matter where the robot is in the polygon, it
should hear from at least one sensor. That is, the placed sensors must together
guard the whole room and leave no place uncovered. The second one is, if the
robot hears from several sensors, there must be at least one sensor broadcasting
with a frequency that is not reused by some other sensor in the range. That
is, the sensors must have conflict-free frequencies. If these two properties are
satisfied, then the robot can guide itself using the deployed wireless sensors as
landmarks. This problem is also closely related to frequency assignment problem
in wireless networks [1,5]. One can easily solve this problem by placing a sensor
at each corner of the room, and assigning a different frequency to each sensor.
However, this method becomes very expensive as the number of sensors grow [1,
29]. Therefore, the main goal in this problem is minimize the number of different
frequencies assigned to sensors. Since the cost of a sensor is comparatively very
low, we do not aim to minimize the number of sensors used.
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The above scenario is geometrically modeled as follows. The room is a simple
polygon with n vertices. There are m sensors placed in the polygon (usually on
some of its vertices), and two different sensors are given two different colours if,
and only if they broadcast in different frequencies.

Basic Definitions. We consider simple polygons (informally, “without holes”),
usually non-convex. Two points p1 and p2 of a polygon P are said to see each
other, or be visible to each other, if the line segment p1p2 fully belongs to P . In
this context, we say that a guard g guards a point x of P if the line segment gx
fully belongs to P . A polygon P is a weak visibility polygon if P has an edge uv
such that for every point p of P there is a point p′ on uv seeing p.

In the paper, we pay close attention to a special type of polygons – funnels.
A polygon P is a funnel if (Fig. 1) precisely three of the vertices of P are convex,
and two of the convex vertices share one common edge – the base of the fun-
nel. Funnels attract special interest in the study of visibility graphs, as a very
fundamental class of polygons. Other polygons can be decomposed into funnels,
giving a good overview of their structure with respect to most geometric prob-
lems. Funnels have a simpler structure due to their two concave chains and hence
allow for easier handling of visibility problems than other classes of polygons.

A solution of conflict-free chromatic guarding of a polygon P consists of a
set of guards in P , and an assignment of colours to the guards (one colour per
guard) such that the following holds; every viewer v in P (where v can be any
point of P in our case) can see a guard of colour c such that no other guard
seen by v has the same colour c. In the point-to-point (P2P) variant the guards
can be placed in any points of P , while in the vertex-to-point (V2P) variant the
guards can be placed only at the vertices of P . (There also exists a V2V variant
in which also viewers are restricted to the vertices.) In all variants the goal is to
minimize the number of colours (e.g., frequencies) used.

When writing log n, we mean the binary logarithm log2 n.

Related Research. The aforementioned P2P conflict-free chromatic guarding (art
gallery) problem has been studied in several papers. Bärtschi and Suri gave
an upper bound of O(log2 n) colours on simple n-vertex polygons [5]. Later,
Bärtschi et al. improved this upper bound to O(log n) on simple polygons [4],
and Hoffmann et al. [22], while studying the orthogonal variant of the problem,
have given the first nontrivial lower bound of Ω

(
log log n/ log log log n

)
colours

holding also in the general case of simple polygons.
Our paper deals with the V2P variant in which guards should be placed on

polygon vertices and viewers can be any points of the polygon. Note that there
are some fundamental differences between point and vertex guards, e.g., funnel
polygons (Fig. 1) can always be guarded by one point guard (of one colour)
but they may require up to Ω(log n) colours in the V2P conflict-free chromatic
guarding, as shown in [4]. Hence, extending a general upper bound of O(log n)
colours for point guards on simple polygons by Bärtschi et al. [4] to the more
restrictive vertex guards is a challenge, which we can now only approach with
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Fig. 1. A funnel F with seven vertices in L labeled l1, . . . , l7 from bottom to top, and
eight vertices in R labeled r1, . . . , r8, including the apex α = l7 = r8. The picture also
shows the upper tangent of the vertex l2 of L (drawn in dashed red), the upper tangent
of the vertex r3 of R (drawn in dashed blue), and their intersection t. (Color figure
online)

an O(log2 n) bound (see below). Note that the same bound of O(log2 n) colours
was attained by [4] when allowing multiple guards at the same vertex.

Our Results. We give a polynomial-time algorithm to find the optimum number
m of vertex-guards to guard all the points of a funnel, and show that the num-
ber of colours in the corresponding conflict-free chromatic guarding problem is
log m + Θ(1) (Theorem 2). This leads to an approximation algorithm for V2P
conflict-free chromatic guarding of a funnel, with only a constant (+4) additive
error (Corollary 9). A remarkable feature of this result is that we prove a direct
relation (Theorem 8) between the optimal numbers of guards and of colours
needed in funnel polygons. Finally, we sketch that a weak visibility polygon
on n vertices can be V2P conflict-free chromatic guarded with only O(log2n)
guards, and generalize this upper bound to all simple polygons, which is a result
incomparable with previous [4].

Note that all our algorithms are simple and suitable for easy implementation.
Due to space restrictions, the proofs of a part of the statements are left for the
full paper published on arXiv [13], and those statements are marked with (*).

2 Minimizing Vertex-to-Point Guards for Funnels

Before turning to the conflict-free chromatic guarding problem, we first resolve
the problem of minimizing the total number of vertex guards needed to guard
all points of a funnel polygon. We start by describing a simple procedure (Algo-
rithm 1) that provides us with a guard set which may not always be optimal
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Algorithm 1. Simple vertex-to-point guarding of funnels (uncoloured).
Input: A funnel F with concave chains L = (l1, . . . , lk) and R = (r1, . . . , rm).
Output: A vertex set guarding all the points of F .

1 Initialize an auxiliary digraph G with two dummy vertices x and y,

and declare ups(x) = l1r1;
2 Initialize S ← {x};
3 while S is not empty do
4 Choose an arbitrary t ∈ S, and remove t from S;
5 Let s = ups(t) ; /* s is a segment inside F */

6 Let q and p be the ends of s on L and R, respectively;
7 Let i and j be the largest indices such that li and rj are not above q

and p, resp.;
8 if li+1 can see whole s then i′ ← i + 1;
9 else i′ ← i; /* the topmost vertex on the left seeing whole s */

10 if rj+1 can see whole s then j′ ← j + 1;
11 else j′ ← j; /* the topmost vertex on the right seeing whole s */

12 Include the vertices li′ and rj′ in G;
13 foreach z ∈ {li′ , rj′} do
14 Add the directed edge (t, z) to G ;
15 if segment ups(z) includes the apex lk = rm then
16 Add the directed edge (z, y) to G ; /* y is the dummy vertex */

17 else S ← S ∪ {z}; /* more guards are needed above z */

18 Enumerate a shortest path from x to y in G;
19 Output the shortest path vertices without x and y as the required guard set;

(but very close to the optimum, see Corollary 3). This procedure will be helpful
for the subsequent colouring results. Then we also refine the simple procedure
to compute the optimal number of guards in Algorithm 2.

We use some special notation here. See Fig. 1. Let the given funnel be F ,
oriented in the plane as follows. On the bottom, there is the horizontal base of
the funnel – the line segment l1r1 in the picture. The topmost vertex of F is
called the apex, and it is denoted by α. There always exists a point x on the base
which can see the apex α, and then x sees the whole funnel at once. The vertices
on the left side of apex form the left concave chain, and analogously, the vertices
on the right side of the apex form the right concave chain of the funnel. These
left and right concave chains are denoted by L and R respectively. We denote
the vertices of L as l1, l2, . . . , lk from bottom to top. We denote the vertices of
R as r1, r2, . . . , rm from bottom to top. Hence, the apex is lk = rm = α.

Let li be a vertex on L which is not the apex. We define the upper tangent of
li, denoted by upt(li), as the ray whose origin is li and which passes through li+1.
Upper tangents for vertices on R are defined analogously. Let p be the point of
intersection of R and the upper tangent of li. Then we define ups(li) as the line
segment li+1p. For the vertices of R, ups is defined analogously: if q is the point
of intersection of L and the upper tangent of rj ∈ R, then let ups(rj) := rj+1q.
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Fig. 2. A symmetric funnel with 17 vertices. The gray dashed lines show the upper
tangents of the vertices. It is easy to see that Algorithm 1 selects 4 guards, up to
symmetry, at l2, r5, l7, l9 (the red vertices). However, the whole funnel can be guarded
by three guards at l4, r4, l8 (the green vertices). (Color figure online)

The underlying idea of Algorithm 1 is as follows. Imagine we proceed bottom-
up when building the guard set of a funnel F . Then the next guard is placed at
the top-most vertex z of F , nondeterministically choosing between z on the left
and the right chain of F , such that no “unguarded gap” remains below z. Note
that the unguarded region of F after placing a guard at z is bounded from below
by ups(z). The nondeterministic choice of the next guard z is encoded within a
digraph, in which we then find the desired guard set as a shortest path.

Lemma 1 (*). Algorithm 1 runs in polynomial time, and it outputs a feasible
guard set for all the points of a funnel F .

Unfortunately, the guard set produced by Algorithm 1 may not be optimal
under certain circumstances. See the example in Fig. 2; the algorithm picks the
four red vertices, but the funnel can be guarded by the three green vertices.

For the sake of completeness, we now refine the simple approach of Algo-
rithm 1 to always produce a minimum size guard set. Our refinement is going
to consider also pairs of guards (one from the left and one from the right chain)
in the procedure. We correspondingly extend the definition of ups to pairs of
vertices as follows. Let li and rj be vertices of F on L and R, respectively, such
that ups(li) = li+1p intersects ups(rj) = rj+1q in a point t (see in Fig. 1). Then
we set ups(li, rj) as the polygonal line (“∨-shape”) pt ∪ qt.

Algorithm 2, informally saying, enriches the two nondeterministic choices of
placing the next guard in Algorithm 1 with a third choice; placing a suitable
top-most pair of guards z = (z1, z2), z1 ∈ L and z2 ∈ R, such that again no
“unguarded gap” remains below (z1, z2). Figure 2 features a funnel in which
placing such a pair of guards (z1 = l4, z2 = r4) may be strictly better than using
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Algorithm 2. (*) Optimum vertex-to-point guarding of funnels.
Input: A funnel F with concave chains L = (l1, . . . , lk) and R = (r1, . . . , rm).
Output: A minimum vertex set (uncoloured) guarding all the points of F .

* On line 13 of Algorithm 1, consider z ∈ {li′ , rj′ , (li′′ , rj′′)}, where i′′ and j′′

are the largest indices such that li′′ lies strictly below ups(p) and rj′′ strictly
below ups(q). (Then li′′ and rj′′ together can see whole s.);
* On line 14 of Algorithm 1, make the edge (t, z) of G weight 2 if z = (li′′ , rj′′).

any two consecutive steps of Algorithm 1. On the other hand, we can show that
there is no better possibility than one of these three considered steps, giving us:

Theorem 2 (*). Algorithm 2 runs in polynomial time, and it outputs a feasible
guard set of minimum size guarding all the points of a funnel F .

Lastly, we establish that the difference between Algorithms 1 and 2 cannot be
larger than 1 guard. Let G1 with the source x1 be the auxiliary graph produced
by Algorithm 1, and G2 with the source x2 be the one produced by Algorithm 2.
We can prove the following detailed statement by induction on i ≥ 0:

– Let P 2 = (x2 = x2
0, x

2
1, . . . , x

2
i ) be any directed path in G2 of weight k, let Q2

denote the set of guards listed in the vertices of P 2, and L2 = L ∩ Q2 and
R2 = R ∩ Q2. Then there exists a directed path (x1 = x1

0, x
1
1, . . . , x

1
k, x

1
k+1)

in G1 (of length k + 1), such that the guard of xk is at least as high as all
the guards of L2 (if xk ∈ L) or of R2 (if xk ∈ R), and the guard of xk+1 is
strictly higher than all the guards of Q2.

Corollary 3 (*). The guard set produced by Algorithm 1 is always by at most
one guard larger than the optimum solution produced by Algorithm 2.

3 V2P Conflict-Free Chromatic Guarding of Funnels

In this section, we continue to study funnels. To obtain a conflict-free coloured
solution, we will simply consider the guards chosen by Algorithm 1 in the ascend-
ing order of their vertical coordinates, and colour them in the ruler sequence,
(e.g., [21]) in which the ith term is the exponent of the largest power of 2 that
divides 2i. (The first few terms are 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1 . . . .) So,
if Algorithm 1 gives m guards, then our approach will use about log m colours.

Our aim is to show that this is always very close to the optimum, by giving
a lower bound on the number of necessary colours of order log m − O(1). To
achieve this, we study the following two sets of guards for a given funnel F :

– The minimal guard set A computed by Algorithm 1 on F (which is overall
nearly optimal by Corollary 3); if this is not unique, then we fix any such A.

– A guard set D which achieves the minimum number of colours for conflict-free
guarding; note that D may be much larger than A since it is the number of
colours which matters.
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Fig. 3. An example of a 2-interval Q of a funnel (green and bounded by s1 = ups(p)
and s2 = los(q)). The red vertices a1 = p, a2, a3, a4 are the guards computed by
Algorithm 1, and a2, a3 belong to the interval Q. The shadow of Q (filled light gray) is
bounded from below by the bottom dotted line, and the inner point o is the so-called
observer of Q. (Color figure online)

On a high level, we are going to show that the colouring of D must (somehow)
copy the ruler sequence on A. For that we will recursively bisect our funnel into
smaller “layers”, gaining one unique colour with each bisection.

Analogously to the notion of an upper tangent from Sect. 2, we define the
lower tangent of a vertex li ∈ L, denote by lot(li), as the ray whose origin is li
and which passes through rj ∈ R such that rj is the lowest vertex on R seeing
li. Note that lot(li) may intersect R in rj alone or in a segment from rj up. Let
los(li) := lirj . The definition of lot() and los() for vertices of R is symmetric.

We now give a definition of “layers” of a funnel which is crucial for our proof.

Definition 4 (t-interval).Let F be a funnel with the chains L = (l1, l2, . . . , lk)
and R = (r1, r2, . . . , rm), and A be the fixed guard set A computed by Algo-
rithm 1 on F . Let s1 be the base of F , or s1 = ups(p) for some vertex p of F
(where p is not the apex or its neighbour). Let s2 be the apex of F , or s2 = los(q)
for some vertex q of F (where q is not in the base of F ). Assume that s2 is above
s1 within F . Then the region Q of F bounded from below by s1 and from above
by s2, excluding q itself, is called an interval of F . Moreover, Q is called a
t-interval of F if Q contains at least t of the guards of A. See Fig. 3.

Having an interval Q of the funnel F , bounded from below by s1, we define
the shadow of Q as follows. If s1 = ups(li) (s1 = ups(rj)), then the shadow
consists of the region of F between s1 and los(li+1) (between s1 and los(rj+1),
respectively). If s1 is the base, then the shadow is empty.

Lemma 5 (*). If Q is a 13-interval of the funnel F , then there exists a point
in Q which is not visible from any vertex of F outside of Q.
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Our second crucial ingredient is the possibility to “almost privately” see the
vertices of an interval Q from one point as follows. If s2 = los(q), then the
intersection point of lot(q) with s1 is called the observer of Q. (Actually, to be
precise, we should slightly perturb this position of the observer o so that the
visibility between o and q is blocked.) If s2 is the apex, then consider the spine
of F instead of lot(q). See again Fig. 3. The following is easy to argue.

Lemma 6 (*). The observer o of an interval Q in a funnel F can see all the
vertices of Q, but o cannot see any vertex of F which is not in Q and not in the
shadow of Q.

The last ingredient before the main proof is the notion of sections of an
interval Q of F . Let s1 and s2 form the lower and upper boundary of Q. Consider
a vertex li ∈ L of Q. Then the lower section of Qat li is the interval of F bounded
from below by s1 and from above by los(li). The upper section of Qat li is the
interval of F bounded from below by ups(li) and from above by s2. Sections of
rj ∈ R are defined analogously. Again, the following is straightforward.

Lemma 7 (*). Let Q be a t-interval of the funnel F , and let Q1 and Q2 be its
lower and upper sections at some vertex p. Then Qi, i = 1, 2, is a ti-interval
such that t1 + t2 ≥ t − 3.

Theorem 8. Any conflict-free chromatic guarding of a given funnel requires at
least �log2(m+3)�−3 colours, where m is the minimum number of guards needed
to guard the whole funnel.

Proof. We will prove the following claim by induction on c ≥ 0: If Q is a t-
interval in the funnel F and t ≥ 16 · 2c − 3, then any conflict-free colouring of F
must use at least c + 1 colours on the vertices of Q or of the shadow of Q.

In the base c = 0 of the induction, we have t ≥ 16 − 3 = 13. By Lemma 5,
some point of Q is not seen from outside, and so there has to be a coloured guard
in some vertex of Q, thus giving c + 1 = 1 colour.

Consider now c > 0. The observer o of Q (which sees all the vertices of Q)
must see a guard g of a unique colour where g is, by Lemma 6, a vertex of Q
or of the shadow of Q. In the first case, we consider Q1 and Q2, the lower and
upper sections of Q at g. By Lemma 7, for some i ∈ {1, 2}, Qi is a ti-interval of
F such that ti ≥ (t − 3)/2 ≥ (16 · 2c − 6)/2 = 16 · 2c−1 − 3. In the second case (g
is in the shadow of Q), we choose g′ as the lowermost vertex of Q on the same
chain as g, and take only the upper section Q1 of Q at g′. We continue as in the
first case with i = 1.

By induction assumption for c−1, Qi together with its shadow carry a set C
of at least c colours. The shadow of Q2 is included in Q, and the shadow of Q1

coincides with the shadow of Q, moreover, the observer of Q1 sees only a subset
of the shadow of Q seen by the observer o of Q. Since g is not a point of Qi or
its shadow, but our observer o sees the colour cg of g and all the colours of C,
we have cg 
∈ C and hence C ∪ {cg} has at least c + 1 colours, as desired.

Finally, we apply the above claim to Q = F . We have t ≥ m, and for
t ≥ m ≥ 16 · 2c − 3 we derive that we need at least c + 1 ≥ �log(m + 3)� − 3
colours for guarding whole F . ��
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Algorithm 3. Approximate conflict-free chromatic guarding of a funnel.
Input: A funnel F with concave chains L = (l1, . . . , lk) and R = (r1, . . . , rm).
Output: A conflict-free chromatic guard set of F using ≤ OPT + 4 colours.

1 Run Algorithm 1 to produce a guard seq. A = (a1, a2, . . . , at) (bottom-up);
2 Assign colours to members of A according to the ruler sequence; the vertex ai

gets colour ci where ci is the largest integer such that 2ci divides 2i;
3 Output coloured guards A as the (approximate) solution;

Corollary 9. Algorithm 3, for a given funnel F , outputs in polynomial time a
conflict-free chromatic guard set A, such that the number of colours used by A
is by at most four larger than the optimum.

Proof. Note the following simple property of the ruler sequence: if ci = cj for
some i 
= j, then c(i+j)/2 > ci. Hence, for any i, j, the largest value occurring
among colours ci, ci+1, . . . , ci+j−1 is unique. Since every point of F sees a consec-
utive subsequence of A, this is a feasible conflict-free colouring of the funnel F .

Let m be the minimum number of guards in F . By Corollary 3, it is m+1 ≥
t = |A| ≥ m. To prove the approximation guarantee, observe that for t ≤ 2c − 1,
our sequence A uses ≤ c colours. Conversely, if t ≥ 2c−1, i.e. m ≥ 2c−1 − 1, then
the required number of colours for guarding F is at least c − 1 − 3 = c − 4, and
hence our algorithm uses at most 4 more colours than the optimum. ��

4 Concluding Remarks

We have designed an algorithm for producing a V2P guarding of funnels that is
optimal in the number of guards. We have also designed an algorithm for a V2P
conflict-free chromatic guarding for funnels, which gives only an additive error
(+4) with respect to the minimum number of colours required. We believe that
the latter can be strengthened to an exact solution by sharpening the arguments
involved (though, it would likely not be easy).

Regarding V2P conflict-free chromatic guarding in a more general setting,
we provide the following upper bound as a corollary of the previous result.

Theorem 10 (*). There is an algorithm computing in polynomial time a conf-
lict-free chromatic guarding of a weak visibility polygon using O(log2 n) colours.

A rough sketch of the proof is as follows. Each weak visibility polygon can be
straightforwardly partitioned into a sequence of maximal (overlapping) funnels,
and we can independently guard each of the funnels with O(log n) colours by
applying Algorithm 3. These colourings, unsurprisingly, may conflict with each
other, and so we additionally couple the colours in funnels with O(log n) colours
of the ruler sequence assigned to each of the funnels.

Secondly, we can use a polygon decomposition technique introduced by Suri
[30] to generalize the upper bound from weak visibility polygons (Theorem 10) to
all simple polygons. The technique has already been used by Bärtschi et al. in [4]
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for the P2P version of our problem. Though, there is still a room for improvement
down to O(log n), which is the worst-case scenario already for funnels and which
would match the previous P2P upper bound for simple polygons of [4].

To summarize, we propose the following open problems for future research:

– Improve Corollary 9 to an exact algorithm for guarding a funnel.
– Improve the upper bound in Theorem 10 to O(log n).
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