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Abstract

We investigate upward straight-line embeddings (UP-
SEs) of oriented paths. Along the lines of similar re-
sults in the literature, we find a condition —related to
the number of vertices in between sources and sinks of
an oriented path— that guarantees that an oriented
path satisfying the condition on n vertices admits an
UPSE into any n-point set in general position. We
also show that the following holds for every ε > 0. If
S is a set of n points chosen uniformly at random in
the unit square, and P is an oriented path on at most
(1/3− ε)n vertices, then with high probability P has
an UPSE into S.

Introduction

A straight-line embedding of a graph G into a point set
S in the plane is an embedding of G in which each ver-
tex is mapped to a point in S, each edge is mapped to
the straight-line segment between its endpoints, and
no two edges cross each other.

The question of deciding whether a given graph ad-
mits a straight-line embedding into a given point set
S is an important problem in computational geome-
try [5, 6, 7, 8, 9, 10, 11]. In one variant of this prob-
lem, G is a directed graph (or digraph, for short), and
the question is if G has an upward straight-line em-
bedding on S, that is, a straight-line embedding of G
into S such that, for each (directed) edge −→uv of G,
the y-coordinate of u is smaller than the y-coordinate

∗Email: onur@mail.muni.cz Research supported by the
Czech Science Foundation research project 17-00837S.
†Email: casuso.montero@gmail.com.
‡Email: cmedina@ifisica.uaslp.mx. Research supported by

CONACYT Grant 222667.
§Email: teresa@matmor.unam.mx
¶Email: mraggi@gmail.com
‖Email: e.roldan@im.unam.mx
∗∗Email: gsalazar@ifisica.uaslp.mx. Research supported by

CONACYT Grant 22667.
††Email: urrutia@matem.unam.mx

of v. Following [12], for brevity we will refer to an
upward straight-line embedding simply as an UPSE.

Binucci et al. [4] presented several interesting state-
ments on which digraphs admit an UPSE on a given
point set. Among other results, they proved that even
if the point set S is in convex position, then there exist
digraphs on |S| vertices whose underlying undirected
graphs are trees, and do not have an UPSE into S.
On the other hand, they proved that if the underlying
undirected graph is a path on |S| vertices (and S is in
convex position), then an UPSE into S always exists.
This last result was refined by Angelini et al. in [3],
where (among other results) this was extended to the
case in which the underlying undirected graph is a
caterpillar.

In this work we focus on the case in which G is
an oriented path, that is, the underlying unoriented
graph of G is a path. A switch in an oriented path is
a vertex that is either a source or a sink. Note that
the first and last vertices are always switches.

It is easy to show that if an oriented path on n
vertices has at most three switches, then it admits
an UPSE into every n-point set in general position.
Along these lines, in [3] some results are given about
oriented paths with a small number of switches. For
instance, it is proved that if an oriented path P on
n vertices has five switches, and at least two of the
monotone paths composing P are single edges, then
P admits an UPSE into every n-point set in general
position.

1 Our results

We present a condition, also related to switches, that
guarantees that an oriented path on n vertices admits
an UPSE into every n-point set in general position.
Let P be an oriented path, and let P1, P2, . . . , Pr be
the decomposition of P into maximal monotone paths.
That is, for i = 1, 2, . . . , r, Pi is an oriented path none
of whose internal vertices is a switch, and is maximal
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with respect to this property, and P is the concatena-
tion P1P2 . . . Pr. We call P1, P2, . . . , Pr the canonical
decomposition of P . If P is a path, then we let |P |
denote the number of edges of P .

Theorem 1 Let P be an oriented path with n ver-
tices, and let P1, P2, . . . , Pr be the canonical decom-
position of P . Let S be any n-point set in general po-
sition. If |Pi| ≥

∑
j>i |Pj | for every i = 1, 2, . . . , r− 1,

then P admits an UPSE into S.

Another result given in [3] is that every oriented
path on n vertices with at most k switches admits
an UPSE into every point set in general position
with n2k−2 points. This was later improved (for
k > Ω(log n)) by Mchedlidze in [12], who proved that
if P is an oriented path on n vertices, and S is any
set of (n− 1)2 + 1 points in general position, then P
admits an UPSE into S.

Our next statement is along the lines of this last
result by Mchedlidze, in the sense that we consider
the question of whether a given oriented path admits
an UPSE into a point set in general position, whose
cardinality may be greater than the number of vertices
in the path. We show that the quadratic bound in [12]
can be improved (with high probability) to a linear
bound, if S is a random point set in the unit square.

Theorem 2 Let ε > 0, and let n be an integer. Let
P be an oriented path on at most (1/3− ε)n vertices.
If S is a random set of n points in the unit square,
then w.h.p. (with high probability) P has an UPSE
into S.

In order to prove Theorems 1 and 2 we now in-
troduce the concept of a signature, which encodes an
oriented path into a binary sequence.

2 Signatures

For the proofs of Theorems 1 and 2 it is convenient
to record the orientations of the edges in an oriented
path in a binary sequence. A signature is a sequence
σ = σ1σ2 · · ·σk in {+,−}k, for some positive integer
k. The integer k is the size of σ.

Now let P be an oriented path, and let p1, p2, . . . , pn
be the vertices of P in the order in which they appear
in the underlying oriented path of P . We define σ(P )
as the signature obtained from P as follows. If for
i ∈ {1, . . . , n − 1} the edge in P joining pi and pi+1

is −−−−→pipi+1 (respectively, −−−−→pi+1pi), then the ith entry of
σ(P ) is + (respectively, −).

Evidently, any signature σ is the signature σ(P ) of
some oriented path P .

Now let S be a point set in general position, and let
σ = σ1σ2 · · ·σk be a signature. We say that σ is real-
izable on S if there exist a geometric (that is, straight-
line, noncrossing) path Q = (q1, q2, . . . , qk+1), whose

vertices are points in S, and for each i ∈ {1, . . . , k},
σi = + (respectively, σi = −) if and only if the y-
coordinate of qi is smaller (respectively, greater) than
the y-coordinate of qi+1.

The following is an immediate consequence of these
definitions.

Observation 3 Let P be an oriented path, and let
S be a point set in general position. Then P admits
an UPSE on S if and only if σ(P ) is realizable on S.

This observation allows us to write Theorems 1
and 2 in terms of signatures. For Theorem 1, we need
a corresponding notion, for signatures, of the canoni-
cal decomposition of an oriented path.

Given a signature σ, define τi(σ) as the ith run
of either +’s or −’s, so that σ = τ1τ2 . . . τr, where
r is the number of runs. We say that τ1τ2 . . . τr is
the canonical decomposition of σ. For example, for
σ = (+ + + − −+), τ1(σ) = (+ + +), τ2(σ) = (−−)
and τ3(σ) = (+).

We now state Theorems 1 and 2 in terms of signa-
tures. The fact that Theorems 4 and 5 are equivalent
to Theorems 1 and 2 follows immediately from Ob-
servation 3.

Theorem 4 (Implies Theorem 1) Let τ be a sig-
nature of size n − 1, for some integer n ≥ 2, and let
τ1τ2 . . . τr be its canonical decomposition. Let S be
any n-point set in general position. If |τi| ≥

∑
j>i |τj |

for every i ∈ {1, . . . , r − 1}, then τ is realizable on S.

Theorem 5 (Implies Theorem 2) Let ε > 0, and
let n be an integer. Let τ be any signature of size at
most (1/3 − ε)n. If S is a random set of n points in
the unit square, then w.h.p. τ is realizable on S.

3 Proof of Theorem 4

We proceed by induction on r.
We restrict ourselves to paths P = (p1, . . . , pn) such

that p1 is in the boundary of the convex hull and no
edge pipi+1 (the straight segment joining pi and pi+1)
intersects the interior of the convex hull of {pj}j>i.
This guarantees that P does not self-intersect.

Lemma 6 Let Q be a set of points. The signature
σ = τ1τ2 with |τ1| > |τ2| (with τ1 consisting of +’s)
can be realized by a path that starts in the lowest
point of Q.

Proof. Let q be the lowest point of Q, and let s(q,Q)
be the length of the shortest path from q to the highest
point in Q using only vertices and edges from the
boundary of the convex hull of Q.

Clearly s(q,Q) ≤ |Q|/2. If s(q,Q) = |τ1| + 1, we
can just ascend using the path given by s(q,Q) and
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Figure 1: Visualization of a path from Lemma 6.

descend using the remaining points. If not, necessarily
s(q,Q) ≤ |τ1|. Then, we define q′ as the lowest point
of Q′ = Q \ {q}. There are two cases. If s(q′, Q′) ≤
|τ1|, continue the path to q′ and proceed inductively.
Otherwise, let U be the set of points in ∆(Q′)\∆(Q),
where ∆(X) ⊂ X denotes the set of points in the
boundary of the convex hull of X (see Figure 2).

Figure 2: Every point of U can be seen from q.

It is easy to see that no segment qu for u ∈ U
intersects the interior of ∆(Q′). Choose u ∈ U for
which s(u,Q′) = |τ1| and just follow the boundary
until the highest point is reached.

Once the highest point is reached using |τ1| ascend-
ing segments, we can finish the path by descending
through the remaining points. �

Consider σ′ constructed by flipping the signs of τr
in σ. Suppose, for example, that τr consists of −’s
and we flip them to +’s. Clearly, σ′ satisfies the con-
ditions in Theorem 4. By the induction hypothesis,
σ′ can be realized in Q by a path P ′ satisfying the
above restriction. The last run of P ′ consists only
of ascending edges. Then let V be the set of points
involved in this run, and apply Lemma 6.

4 An algorithm to realize a prefix of a signature

We have devised an algorithm that, given a point set
S in the unit square, and a signature σ, yields a path
P that realizes a prefix of σ. This algorithm was de-
signed having in mind the case in which S is a random
point set; for an arbitrary S, it can give extremely
poor results. If at any point when running the al-
gorithm we cannot continue, we stop and return the
current path P .

Sort the points of S by their x-coordinate. The
algorithm processes one point at a time in this order.
In each step we decide whether or not the current
point will ultimately belong to path P .

Suppose, without loss of generality, that σ starts
with +. Divide the unit square into horizontal thirds
and find the first point qf in the bottom third (whose
y coordinate is in [0, 1/3)). This will be the first point
of the path P .

Now we attempt to extend P . Let U be the set of
the first |τ1(σ)| − 1 points which come after qf and
are in the middle third (whose y coordinates are in
[1/3, 2/3)). Then find the next point q` which is in
the top third. Set P to be (qf , U, q`), where the points
of U are taken in ascending order with respect to their
y coordinates.

Figure 3: An example with |τ1| = 6

After this process we are in a situation where the
last point of P is in the top third, and the next part
of the signature (τ2) consists of −’s, which is an anal-
ogous situation to the one we started with and so we
can repeat the procedure. Note that this path cannot
self-intersect.

As we mentioned above, this algorithm may work
extremely poorly for some point sets and signatures.
For example, if all the points in the point set S have
y-coordinates less than 1/3, and σ starts with +, then
the resulting path will not have a single edge. But this
algorithm is designed for dealing with random point
sets.

5 Realizing signatures in random point sets:
proof of Theorem 5

In order to analyze the performance of the given algo-
rithm for random point sets, it is convenient to think
that we first randomly select the x-coordinates, then
order these from left to right, and then randomly se-
lect the y-coordinates. This last step (of selecting
the y-coordinates) may be thought of as unveiling the
points. The key observation is that each time we un-
veil a point, with probability 1/3 this point will end
up being part of the final path. Indeed, at each step,
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when we are about to unveil a point, there is an in-
terval I ∈ {[0, 1/3), [1/3, 2/3), [2/3, 1]} such that the
point to be unveiled will be part of the final path if
and only if the y-coordinate of this point is in I.

The main ingredient in the proof of Theorem 5 is
the following lemma, which estimates the expected
size of the non-crossing path obtained from the algo-
rithm described in the previous section, for the case
in which S is randomly generated.

Lemma 7 Let Sn be a random set of n points in
the unit square, and let σ be any signature of length
n−1. Let Prefix(Sn, σ) be the random variable that
measures the size of the largest prefix of σ that can
be realized in Sn. Then, for every ε > 0, w.h.p. (with
high probability)

Prefix(Sn, σ) ≥ (1/3− ε)n.

Proof. We run the algorithm described in the previ-
ous section, on Sn and σ. Let P be the path obtained
at the end of the algorithm. Thus P realizes a prefix
of σ. We recall that for each point i of Sn, the proba-
bility that i is in P is 1/3. A standard argument using
Chernoff’s bound for the sum of independent random
variables (see Theorem A.1.11 in [2]) shows that

Pr
[
|P | <

(
1/3− ε

)
n
]
< e(−3ε

2/4)(1−3ε/2)n,

from which the lemma immediately follows. �

Proof. [Proof of Theorem 5] Let Sn be a random set
of n points in the unit square, and let τ be a signature
of length ` ≤ (1/3 − ε)n. Let σ be the signature of
length n−1 obtained by appending n−1−` +’s to τ .
By Lemma 7, w.h.p. the largest prefix of σ that can
be realized in Sn has size at least (1/3 − ε)n. Thus
w.h.p. τ can be realized in Sn. �

6 Concluding remarks and open questions

An important open question is whether or not, for
every ordered path P with n vertices and every n-
point set S in general position, P admits an UPSE
into S. In [1], it is reported that this has an affirma-
tive answer for every n ≤ 10. In the terminology of
signatures, this reads as follows.

Question 8 Is it true that for every n-point set S in
general position, and every signature τ of size n − 1,
τ is realizable on S?

The result by Mchedlidze [12] mentioned in Sec-
tion 1 implies that if S is an n-point set in general
position, and τ is a signature of size n− 1, then every
subsequence of τ of size at most (roughly)

√
n can be

realized on S. With an eye on Question 8, one could
ask for the existence of larger subsequences of τ that
can be realized on S.

It is easy to see that if τ is a signature of size n−1,
and S is any n-point set in general position, then τ
has a subsequence of size at least (n − 1)/2 that can
be realized on S. Indeed, it suffices to consider the
maximal subsequences that consist of all +’s or all
−’s; both subsequences are trivially realizable on S,
and so it suffices to take the larger one. We have
been unable to show the existence of a (substantially)
larger subsequence of τ that can be realized on S. In
this spirit, we put forward the following weaker, and
seemingly more approachable, version of Question 8.

Conjecture 9 There exists a constant c > 1/2 with
the following property. Let S be an n-point set in
general position, and let τ be a signature of size n−1.
Then there exists a subsequence of τ of size at least
cn that can be realized on S.
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